SOME APPLICATIONS OF DENSITY THEOREM

Albert Antony. T
Assistant Professor, Department of Mathematics, P M Government College, Chalakudy, Kerala, India

ABSTRACT

We know that, both rationals and irrationals are dense in \mathbb{R}. Therefore, \mathbb{R} has a dense subset, whose complement is also dense in \mathbb{R}. In this paper, I am trying to construct so many counter examples by using this idea, such that

- Construction of a function which is discontinuous everywhere.
- Construction of a function which is continuous exactly at one point (Or at finitely many points).
- Construction of a function which is differentiable at exactly one point (Or at finitely many points).

I am presenting all these constructions as an application of Density theorem.

KEYWORDS: Application of Density Theorem, Sequence of Rationals

Article History

Received: 08 Nov 2017 | Revised: 20 Nov 2017 |Accepted: 10 Dec 2018

INTRODUCTION

Preliminaries \& Definitions
Density Theorem
If x and y are any real number with $x<y$, then, there exists a rational number $r \in Q$ such that $x<r<y$.

Corollary

If x and y are any real number with $x<y$, then there exists an irrational number i such that $x<i<y$.

Sequential Criterion for Continuity

A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{R}$ is continuous at the point c in A , if for every sequence $\left(x_{\mathrm{n}}\right)$ in A that converges to c , the sequence $\left(\mathrm{f}\left(x_{\mathrm{n}}\right)\right)$ converges to $\mathrm{f}(\mathrm{c})$.

Applications of Density Theorem
Construction of a Rational Sequence which Converges to any $\mathbf{x} \in \mathbb{R}$
If x is a real number, then there exists a sequence of rationals that converges to x.
Proof
Let x be a real number.

We know, $-\frac{1}{n}<x+\frac{1}{n} \forall n \in \mathbb{N}$
\therefore By Density theorem, there exist a rational number r_{n} such that $-\frac{1}{n}<\mathrm{r}_{\mathrm{n}}<x+\frac{1}{n} \forall n$
i.e, $\left|\mathrm{r}_{\mathrm{n}}-x\right|<\frac{1}{n} \forall n$
as $n \rightarrow \infty,\left(\frac{1}{n}\right) \rightarrow 0$

Which shows that $\left(\mathrm{r}_{\mathrm{n}}\right) \rightarrow x$.
i.e., $\lim \left(r_{n}\right)=x$.
$\therefore\left(\mathrm{r}_{\mathrm{n}}\right)$ is a sequence of rationals that converges to x.
Note: In a similar way, we can discuss the case of irrationals also.
Construction of a Function which is Discontinuous every where
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}1 \text { if } x \text { rational } \\ 0 \text { if x irrational }\end{array}\right.$
Proof

Let x be a rational number.
Then, $\mathrm{f}(x)=1$.
By 2.1, there exists a sequence of irrationals $\left(\mathrm{i}_{\mathrm{n}}\right) \rightarrow x$.
Suppose f is continuous.
By Sequential criterion of continuity,
$\left(\mathrm{f}\left(\mathrm{i}_{\mathrm{n}}\right)\right) \rightarrow \mathrm{f}(x)$
i.e., $\lim \left(\mathrm{f}\left(\mathrm{i}_{\mathrm{n}}\right)\right)=\mathrm{f}(x)$
i.e., $\lim \left(f\left(i_{1}\right), f\left(i_{2}\right), \ldots \ldots \ldots ..\right)=1$
$\lim (0,0,0, \ldots .)=$.
i.e., $0=1$, this is a contradiction.
$\therefore \mathrm{f}$ is discontinuous at x.
i.e., f is discontinuous at all rational points.

Similarly, we can discuss the case when x is irrational
i.e., f is discontinuous at all irrational points.

Hence, f is discontinuous everywhere on \mathbb{R}.
This function is known as "Dirichlet Unit function".

Construction of a Function Which is Continuous Exactly at One Point

Consider the function,

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}
x \text { if } x \text { rational } \\
-x \text { if } x \text { irrational }
\end{array}\right.
$$

Proof

Let r be a rational number and suppose that f is continuous at r .
Let $\left(i_{n}\right)$ be the sequence of irrationals that converges to r.
i.e., $\left(\mathrm{i}_{\mathrm{n}}\right) \rightarrow \mathrm{r}$.

Since f is continuous at r, by Sequential Criterion,
$\lim \left(f\left(\mathrm{i}_{\mathrm{n}}\right)\right)=\mathrm{f}(\mathrm{r})$
i.e., $\lim \left(f\left(i_{n}\right)\right)=r$
$\lim \left(-\mathrm{i}_{\mathrm{n}}\right)=\mathrm{r}$
$\lim \left(\mathrm{i}_{\mathrm{n}}\right)=\mathrm{r}$
$\lim \left(\mathrm{i}_{\mathrm{n}}\right)=-\mathrm{r}$
$r=-r$
$2 \mathrm{r}=0$
$\mathrm{r}=0$
$\therefore \mathrm{f}(\mathrm{x})$ is discontinuous everywhere expect at $\mathrm{r}=0$.
Now,
Let i be the irrational number. Then $\mathrm{f}(\mathrm{i})=-\mathrm{i}$.
Let $\left(r_{n}\right)$ be the sequence of rationals that converges to i.
i.e., $\lim \left(r_{n}\right)=\mathrm{i}$

Suppose f is continuous at i .
By Sequential Criterion of continuity,
$\lim \left(f\left(r_{n}\right)\right)=f(i)$
i.e., $\lim \left(f\left(r_{n}\right)\right)=-\mathrm{i}$
$\lim \left(r_{n}\right)=-i$
$i=-i$
$2 \mathrm{i}=0$
$i=0$, a contradiction.
$\therefore \mathrm{f}(\mathrm{x})$ is discontinuous at each irrationals.
Hence, $f(x)$ is discontinuous everywhere on \mathbb{R} except possibly at $x=0$.
Now, we check whether this function is continuous at $\mathrm{x}=0$.
We have $-\mathrm{x} \leq \mathrm{f}(\mathrm{x}) \leq \mathrm{x} \boldsymbol{V}^{\prime} \mathrm{x}$
$\lim _{x \rightarrow 0}-x=\lim _{x \rightarrow 0} x=0$
\therefore By Sandwich theorem,
$\lim _{x \rightarrow 0} f(x)=0$
$f(0)=0$
$\therefore \lim _{x \rightarrow 0} f(x)=\mathrm{f}(0)$
Which implies that f is continuous exactly at $\mathrm{x}=0$.

Note:

This function is not differentiable at $\mathrm{x}=0$.
It is clear that, this function is a sharp sandwich between $|\mathrm{x}|$ and $-|\mathrm{x}|$.
$f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$
Here $f(0)=0$
$\therefore f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)}{x}$
$\frac{f(x)}{x}=\left\{\begin{array}{l}\frac{x}{x} \text { if } x \text { rational when } x \neq 0 \\ \frac{-x}{x} \text { if } x \text { irraional when } x \neq 0\end{array}\right.$
$=\left\{\begin{array}{l}1 \text { if } x \text { rational } x \neq 0 \\ -1 \text { if } x \text { irrational }\end{array}\right.$
$\therefore \lim _{x \rightarrow 0} \frac{f(x)}{x}$ does not exist here.

Construction of a Function Which is Differentiable at Exactly One Point

Now we consider the function
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}x^{2} \text { if } x \text { rational } \\ -x^{2} \text { if } x \text { irrational }\end{array}\right.$
Here, we are using smooth sandwitch between $-x^{2}$ and x^{2}

Proof

Let r be a rational number and suppose that f is continuous at r .
Let $\left(i_{n}\right)$ be the sequence of irrationals that converges to r.
i.e., $\left(i_{n}\right) \rightarrow r$

Since f is continuous, by Sequential Criterion
$\lim \left(f\left(\mathrm{i}_{\mathrm{n}}\right)\right)=\mathrm{f}(\mathrm{r})$.
i.e., $\lim \left(f\left(i_{n}\right)\right)=r^{2}$
$\lim \left(-i_{n 3}^{2}\right)=\mathrm{r}^{2}$
$\lim \left(i_{n}^{2}\right)=\mathrm{r}^{2}$
$\lim \left(i_{n}^{2}\right)=-r^{2}$
$r^{2}=-r^{2}$
$2 \mathrm{r}^{2=} 0$
$r^{2}=0$
$\mathrm{r}=0$
$\therefore \mathrm{f}$ is discontinuous at all rationals except possibly at zero.
Similarly, we can discuss the case of irrationals also
$\therefore \mathrm{f}$ is discontinuous at all irrationals.
Now,
We check whether this function is continuous at $\mathrm{x}=0$
We have,
$-x^{2} \leq f(x) \leq x^{2} \forall x$
$\lim _{x \rightarrow 0}-x^{2}=\lim _{x \rightarrow 0} x^{2}=0$
\therefore By Sandwich theorem,

$$
\lim _{x \rightarrow 0} f(x)=0
$$

$$
f(0)=0
$$

$\therefore \lim _{x \rightarrow 0} f(x)=f(0)$

Which implies that f is continuous exactly at $\mathrm{x}=0$.

We know that differentiability implies continuity. The contra-positive is discontinuity implies nondifferentiability.

Hence, this function is not differentiable everywhere, except possibly at zero.
Now, we check differentiability at $\mathrm{x}=0$.

$$
\begin{aligned}
& f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x} \\
& \frac{f(x)}{x}=\left\{\begin{array}{l}
\frac{x^{2}}{x} \text { if } x \text { rational when } x \neq 0 \\
\frac{-x^{2}}{x} \text { if } x \text { irraional when } x \neq 0
\end{array}\right. \\
& \frac{f(x)}{x}=\left\{\begin{array}{c}
x \text { if } x \text { rational } \\
-x \text { if x irrational }
\end{array}\right. \\
& \therefore \lim _{x \rightarrow 0} \frac{f(x)}{x}=0 \\
& \therefore f^{\prime}(0)=0
\end{aligned}
$$

Hence, $f^{\prime}(0)$ exists.

Which shows that f is differentiable at $\mathrm{x}=0$.

CONCLUSIONS

Conclusions are

- There exists a sequence of rationals (irrationals) that converges to any $x \in \mathbb{R}$.
- There exists a function which is discontinuous everywhere.
- There exists a function which is continuous exactly at one point.
- There exists a function which is differentiable at exactly one point.

REFERENCES

1. Introduction to Real Analysis (THIRD EDITION) Robert G.Bartle, Donald R.Sherbert
2. Principles of Mathematical Analysis (THIRD EDITION) Walter Rudin
